Jump to content

Шаблон:Uniform tiles db

Мавод аз Википедиа — донишномаи озод

{{{{{1}}}|{{{2}}}|

|Ub-name=Apeirogonal hosohedron |Ub-image=Apeirogonal hosohedron.png| |Ub-image2=| |Ub-imagecaption= |Ub-vfigimage=| |Ub-dimage=Apeirogonal tiling.png| |Ub-vfig=2∞| |Ub-Wythoff= ∞ | 2 2| |Ub-rotgroup=[∞,2]+, (∞22)| |Ub-group=[∞,2], (*∞22)| |Ub-special=| |Ub-B=?| |Ub-schl={2,∞}| |Ub-dual=Order-2 apeirogonal tiling |Ub-CD=

|Ua-name=Apeirogonal tiling |Ua-image=Apeirogonal tiling.png| |Ua-image2=Apeirogonal tiling.png| |Ua-imagecaption= |Ua-vfigimage=| |Ua-dimage=Apeirogonal hosohedron.png| |Ua-vfig=∞.∞| |Ua-Wythoff= 2 | ∞ 2
2 2 | ∞| |Ua-rotgroup=[∞,2]+, (∞22)| |Ua-group=[∞,2], (*∞22)| |Ua-special=| |Ua-B=?| |Ua-schl={∞,2}| |Ua-dual=Apeirogonal hosohedron |Ua-CD=

|Uainfin-name=Apeirogonal antiprism| |Uainfin-image=Infinite antiprism.png| |Uainfin-image2=Infinite antiprism.png| |Uainfin-imagecaption= |Uainfin-vfigimage=Infinite antiprism verf.png| |Uainfin-dimage=Apeirogonal dipyramid.png| |Uainfin-vfig=3.3.3.∞| |Uainfin-Wythoff= | 2 2 ∞ |Uainfin-rotgroup=[∞,2]+, (∞22)| |Uainfin-group=[∞,2+], (∞22)| |Uainfin-special=| |Uainfin-B=Azap| |Uainfin-schl=sr{2,∞}| |Uainfin-dual=Apeirogonal deltohedron| |Uainfin-CD=

|Uinfin-name=Apeirogonal prism| |Uinfin-image=Infinite_prism_tiling.png| |Uinfin-image2=Infinite_prism_tiling.png| |Uinfin-imagecaption= |Uinfin-vfigimage=Infinite prism verf.svg| |Uinfin-dimage=?| |Uinfin-vfig=4.4.∞| |Uinfin-Wythoff= 2 ∞ | 2 |Uinfin-rotgroup=[∞,2]+, (∞22)| |Uinfin-group=[∞,2], (*∞22)| |Uinfin-special=| |Uinfin-B=Azip| |Uinfin-schl=t{2,∞}| |Uinfin-dual=Apeirogonal dipyramid| |Uinfin-CD=

|Us-name=Square tiling| |Us-name2=quadrille| |Us-image=1-uniform n5.svg| |Us-image2=Uniform tiling 44-t0.png| |Us-imagecaption= |Us-vfigimage=Square tiling vertfig.png| |Us-dfaceimage=Regular quadrilateral.svg| |Us-dimage=1-uniform 5 dual.svg| |Us-vfig=4.4.4.4 (or 44)| |Us-Wythoff= 4 | 2 4 |Us-rotgroup=p4, [4,4]+, (442)| |Us-group=p4m, [4,4], (*442)| |Us-special=| |Us-B=Squat| |Us-schl={4,4}| |Us-dual=self-dual| |Us-dual2=quadrille| |Us-CD=

|Uts-name=Truncated square tiling| |Uts-name2=truncated quadrille| |Uts-image=1-uniform n2.svg| |Uts-image2=Uniform tiling 44-t01.png| |Uts-imagecaption= |Uts-vfigimage=Truncated square tiling vertfig.png| |Uts-dfaceimage=Tiling face 4-8-8.svg| |Uts-dimage=1-uniform 2 dual.svg| |Uts-vfig=4.8.8| |Uts-Wythoff= 2 | 4 4
4 4 2 || |Uts-rotgroup=p4, [4,4]+, (442)| |Uts-group=p4m, [4,4], (*442)| |Uts-special=| |Uts-B=Tosquat| |Uts-schl=t{4,4}
tr{4,4}| |Uts-dual=Tetrakis square tiling| |Uts-dual2=kisquadrille| |Uts-CD=

|Uns-name=Snub square tiling| |Uns-name2=snub quadrille| |Uns-image=1-uniform n9.svg| |Uns-image2=Uniform tiling 44-snub.png| |Uns-imagecaption= |Uns-vfigimage=Snub square tiling vertfig.png| |Uns-dfaceimage=Tiling face 3-3-4-3-4.svg| |Uns-dimage=1-uniform 9 dual.svg| |Uns-vfig=3.3.4.3.4| |Uns-Wythoff= | 4 4 2 | |Uns-rotgroup=p4, [4,4]+, (442)| |Uns-group=p4g, [4+,4], (4*2)| |Uns-special=| |Uns-B=Snasquat| |Uns-schl=s{4,4}
sr{4,4}| |Uns-dual=Cairo pentagonal tiling| |Uns-dual2=4-fold pentille| |Uns-CD=

|Uh-name=Hexagonal tiling| |Uh-name2=hextille| |Uh-image=1-uniform n1.svg| |Uh-image2=Uniform tiling 63-t0.png| |Uh-imagecaption= |Uh-vfigimage=Hexagonal tiling vertfig.png| |Uh-dfaceimage=Alchemy_fire_symbol.svg| |Uh-dimage=1-uniform 1 dual.svg| |Uh-vfig=6.6.6 (or 63)| |Uh-Wythoff= 3 | 6 2
2 6 | 3
3 3 3 || |Uh-rotgroup=p6, [6,3]+, (632)| |Uh-group=p6m, [6,3], (*632)| |Uh-special=| |Uh-B=Hexat| |Uh-schl={6,3}
t{3,6}| |Uh-dual=Triangular tiling| |Uh-dual2=deltille| |Uh-CD=

|Ut-name=Triangular tiling| |Ut-name2=deltille| |Ut-image=1-uniform n11.svg| |Ut-image2=Uniform tiling 63-t2.png| |Ut-imagecaption= |Ut-vfigimage=Triangular tiling vertfig.png| |Ut-dfaceimage=Hexagon.svg| |Ut-dimage=1-uniform 11 dual.svg| |Ut-vfig=3.3.3.3.3.3 (or 36)| |Ut-Wythoff= 6 | 3 2
3 | 3 3
| 3 3 3| |Ut-rotgroup=p6, [6,3]+, (632)
p3, [3[3]]+, (333)| |Ut-group=p6m, [6,3], (*632)| |Ut-special=| |Ut-B=Trat| |Ut-schl={3,6}
{3[3]}| |Ut-dual=Hexagonal tiling| |Ut-dual2=hextille| |Ut-CD=

=

|Uth-name=Truncated hexagonal tiling| |Uth-name2=truncated hextille| |Uth-image=1-uniform n4.svg| |Uth-image2=Uniform tiling 63-t01.png| |Uth-imagecaption= |Uth-vfigimage=Truncated hexagonal tiling vertfig.png| |Uth-dfaceimage=Tiling face 3-12-12.svg| |Uth-dimage=1-uniform 4 dual.svg| |Uth-vfig=3.12.12| |Uth-Wythoff= 2 3 | 6| |Uth-rotgroup=p6, [6,3]+, (632) |Uth-group=p6m, [6,3], (*632)| |Uth-special=| |Uth-B=Toxat| |Uth-schl=t{6,3}| |Uth-dual=Triakis triangular tiling| |Uth-dual2=kisdeltille| |Uth-CD=

|Uht-name=Trihexagonal tiling| |Uht-name2=hexadeltille| |Uht-image=1-uniform n7.svg| |Uht-image2=Uniform tiling 63-t1.png| |Uht-imagecaption= |Uht-vfigimage=Trihexagonal tiling vertfig.png| |Uht-dfaceimage=Tiling face 3-6-3-6.svg| |Uht-dimage=1-uniform 7 dual.svg| |Uht-vfig=(3.6)2| |Uht-Wythoff= 2 | 6 3
3 3 | 3| |Uht-rotgroup=p6, [6,3]+, (632)
p3, [3[3]]+, (333) |Uht-group=p6m, [6,3], (*632)| |Uht-special=Edge-transitive| |Uht-B=That| |Uht-schl=r{6,3}
h2{6,3}| |Uht-dual=Rhombille tiling| |Uht-dual2=rhombille| |Uht-CD=
=

|Urth-name=Rhombitrihexagonal tiling| |Urth-name2=rhombihexadeltille| |Urth-image=1-uniform n6.svg| |Urth-image2=Uniform tiling 63-t02.png| |Urth-imagecaption= |Urth-vfigimage=Small rhombitrihexagonal tiling vertfig.png| |Urth-dfaceimage=Tiling face 3-4-6-4.svg| |Urth-dimage=1-uniform 6 dual.svg| |Urth-vfig=3.4.6.4| |Urth-Wythoff= 3 | 6 2| |Urth-rotgroup=p6, [6,3]+, (632)| |Urth-group=p6m, [6,3], (*632)| |Urth-special=| |Urth-B=Rothat| |Urth-schl=rr{6,3}| |Urth-dual=Deltoidal trihexagonal tiling| |Urth-dual2=tetrille| |Urth-CD=

|Ugrth-name=Truncated trihexagonal tiling| |Ugrth-name2=truncated hexadeltille| |Ugrth-image=1-uniform n3.svg| |Ugrth-image2=Uniform tiling 63-t012.png| |Ugrth-imagecaption= |Ugrth-vfigimage=Great rhombitrihexagonal tiling vertfig.png| |Ugrth-dfaceimage=Tiling face 4-6-12.svg| |Ugrth-dimage=1-uniform 3 dual.svg| |Ugrth-vfig=4.6.12| |Ugrth-Wythoff= 2 6 3 || |Ugrth-rotgroup=p6, [6,3]+, (632)| |Ugrth-group=p6m, [6,3], (*632)| |Ugrth-special=| |Ugrth-B=Othat| |Ugrth-schl=tr{6,3}| |Ugrth-dual=Kisrhombille tiling| |Ugrth-dual2=kisrhombille| |Ugrth-CD=

|Unh-name=Snub trihexagonal tiling| |Unh-name2=snub hextille| |Unh-image=1-uniform 10.png| |Unh-image2=Uniform tiling 63-snub.png| |Unh-imagecaption= |Unh-vfigimage=Snub hexagonal tiling vertfig.png| |Unh-dfaceimage=Tiling face 3-3-3-3-6.svg| |Unh-dimage=1-uniform 10 dual.svg| |Unh-vfig=3.3.3.3.6| |Unh-Wythoff= | 6 3 2| |Unh-rotgroup=p6, [6,3]+, (632)| |Unh-group=p6, [6,3]+, (632)| |Unh-special=chiral| |Unh-B=Snathat| |Unh-schl=sr{6,3}| |Unh-dual=Floret pentagonal tiling| |Unh-dual2=6-fold pentille| |Unh-CD=

|Uet-name=Elongated triangular tiling| |Uet-name2=isosnub quadrille| |Uet-image=1-uniform n8.svg| |Uet-imagecaption= |Uet-vfigimage=Tiling 33344-vertfig.png| |Uet-dfaceimage=Tiling face 3-3-3-4-4.svg| |Uet-dimage=1-uniform 8 dual.svg| |Uet-vfig=3.3.3.4.4| |Uet-Wythoff= 2 | 2 (2 2)| |Uet-rotgroup=p2, [∞,2,∞]+, (2222)| |Uet-group=cmm, [∞,2+,∞], (2*22)| |Uet-special=| |Uet-B=Etrat| |Uet-schl={3,6}:e
s{∞}h1{∞}| |Uet-dual=Prismatic pentagonal tiling| |Uet-dual2=iso(4-)pentille| |Uet-CD=

}}

Ҳуҷҷатгузорӣ