Шаблон:Варақаи унсури кимиёӣ/symbol-to-oxidation-state/testtable
Зоҳир
- Oxidation state data ( )
- Standard comments e.g., predicted ( )
- Technical: /testtable/row, /sandbox
- See also: Template:List of oxidation states of the elements/datacheck (compare with {{List of oxidation states of the elements}} data)
Oxidation states data sets (WP:ELEMENTS talk) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Z | Name | Symbol | complete | main | group | val | note | ||
1 | ҳидроген | H | −1, +1 (an amphoteric oxide) | −1, +1 | 1 | I | |||
2 | ҳелий | He | 0 | 0 | 18 | 0 | |||
3 | литий | Li | +1 (a strongly basic oxide) | +1 | 1 | I | |||
4 | бериллий | Be | +1,[1] +2 (an amphoteric oxide) | +2 | 2 | II | |||
5 | бор | B | −5, −1, +1, +2, +3[2][3] (a mildly acidic oxide) | +3 | 13 | III | |||
6 | карбон | C | −4, −3, −2, −1, 0, +1,[4] +2, +3,[5] +4[6] (a mildly acidic oxide) | −4, +4 | 14 | IV | |||
7 | натрий | N | −3, −2, −1, +1, +2, +3, +4, +5 (a strongly acidic oxide) | −3, +3, +5 | 15 | V | |||
8 | оксиген | O | −2, −1, 0, +1, +2 | −2 | 16 | VI | |||
9 | фтор | F | −1 (oxidizes oxygen) | −1 | 17 | VII | |||
10 | неон | Ne | 0 | 0 | 18 | 0 | |||
11 | натрий | Na | −1, +1 (a strongly basic oxide) | +1 | 1 | I | |||
12 | магний | Mg | +1,[7] +2 (a strongly basic oxide) | +2 | 2 | II | |||
13 | алюминий | Al | −2, −1, +1,[8] +2,[9] +3 (an amphoteric oxide) | +3 | 13 | III | |||
14 | силитсий | Si | −4, −3, −2, −1, +1,[10] +2, +3, +4 (an amphoteric oxide) | −4, +4 | 14 | IV | |||
15 | фосфор | P | −3, −2, −1, +1,[11] +2, +3, +4, +5 (a mildly acidic oxide) | −3, +3, +5 | 15 | V | |||
16 | сулфур | S | −2, −1, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide) | −2, +2, +4, +6 | 16 | VI | |||
17 | хлор | Cl | −1, +1, +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) | −1, +1, +3, +5, +7 | 17 | VII | |||
18 | аргон | Ar | 0 | 0 | 18 | 0 | |||
19 | калий | K | −1, +1 (a strongly basic oxide) | +1 | 1 | I | |||
20 | калсий | Ca | +1,[12] +2 (a strongly basic oxide) | +2 | 2 | II | |||
21 | скандий | Sc | +1,[13] +2,[14] +3 (an amphoteric oxide) | +3 | 3 | III | |||
22 | титан | Ti | −2, −1, +1, +2, +3, +4[15] (an amphoteric oxide) | +4 | 4 | IV | |||
23 | ванадий | V | −3, −1, 0, +1, +2, +3, +4, +5 (an amphoteric oxide) | +5 | 5 | V | |||
24 | хром | Cr | −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) | +2, +3, +6 | 6 | VI | |||
25 | манган | Mn | −3, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) | +2, +4, +7 | 7 | VII | |||
26 | оҳан | Fe | −4, −2, −1, 0, +1,[16] +2, +3, +4, +5,[17] +6, +7[18] (an amphoteric oxide) | +2, +3, +6 | 8 | VIII | |||
27 | кобалт | Co | −3, −1, 0, +1, +2, +3, +4, +5[19] (an amphoteric oxide) | +2, +3 | 9 | VIII | |||
28 | никел | Ni | −2, −1, 0, +1,[20] +2, +3, +4[21] (a mildly basic oxide) | +2 | 10 | VIII | |||
29 | мис | Cu | −2, +1, +2, +3, +4 (a mildly basic oxide) | +2 | 11 | I | |||
30 | руҳ | Zn | −2, 0, +1, +2 (an amphoteric oxide) | +2 | 12 | II | |||
31 | галлий | Ga | −5, −4, −3,[22] −2, −1, +1, +2, +3[23] (an amphoteric oxide) | +3 | 13 | III | |||
32 | германий | Ge | −4 −3, −2, −1, 0, +1, +2, +3, +4 (an amphoteric oxide) | −4, +2, +4 | 14 | IV | |||
33 | арсен | As | −3, −2, −1, +1,[24] +2, +3, +4, +5 (a mildly acidic oxide) | −3, +3, +5 | 15 | V | |||
34 | селен | Se | −2, −1, +1,[25] +2, +3, +4, +5, +6 (a strongly acidic oxide) | −2, +2, +4, +6 | 16 | VI | |||
35 | бром | Br | −1, +1, +3, +4, +5, +7 (a strongly acidic oxide) | −1, +1, +3, +5 | 17 | VII | |||
36 | криптон | Kr | 0, +1, +2 (rarely more than 0; oxide is unknown) | 0 | 18 | 0 | |||
37 | рубидий | Rb | −1, +1 (a strongly basic oxide) | +1 | 1 | I | |||
38 | стронсий | Sr | +1,[26] +2 (a strongly basic oxide) | +2 | 2 | II | |||
39 | иттрий | Y | 0,[27] +1, +2, +3 (a weakly basic oxide) | +3 | 3 | III | |||
40 | сирконий | Zr | −2, +1,[28] +2, +3, +4 (an amphoteric oxide) | +4 | 4 | IV | |||
41 | ниобий | Nb | −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) | +5 | 5 | V | |||
42 | молибден | Mo | −4, −2, −1, 0, +1,[29] +2, +3, +4, +5, +6 (a strongly acidic oxide) | +4, +6 | 6 | VI | |||
43 | технетсий | Tc | −3, −1, 0, +1,[30] +2, +3,[30] +4, +5, +6, +7 (a strongly acidic oxide) | +4, +7 | 7 | VII | |||
44 | рутений | Ru | −4, −2, 0, +1,[31] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) | +3, +4 | 8 | VIII | |||
45 | родий | Rh | −3, −1, 0, +1,[32] +2, +3, +4, +5, +6 (an amphoteric oxide) | +3 | 9 | VIII | |||
46 | палладий | Pd | 0, +1, +2, +3, +4 (a mildly basic oxide) | +2, +4 | 10 | VIII | |||
47 | нуқра | Ag | −2, −1, +1, +2, +3 (an amphoteric oxide) | +1 | 11 | I | |||
48 | кадмий | Cd | −2, +1, +2 (a mildly basic oxide) | +2 | 12 | II | |||
49 | индий | In | −5, −2, −1, +1, +2, +3[33] (an amphoteric oxide) | +3 | 13 | III | |||
50 | қалъагӣ | Sn | −4, −3, −2, −1, +1,[34] +2, +3,[35] +4 (an amphoteric oxide) | −4, +2, +4 | 14 | IV | |||
51 | сурма | Sb | −3, −2, −1, +1, +2, +3, +4, +5 (an amphoteric oxide) | −3, +3, +5 | 15 | V | |||
52 | теллур | Te | −2, −1, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) | −2, +2, +4, +6 | 16 | VI | |||
53 | йод | I | −1, +1, +3, +4, +5, +6, +7 (a strongly acidic oxide) | −1, +1, +3, +5, +7 | 17 | VII | |||
54 | ксенон | Xe | 0, +1, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide) | 0 | 18 | 0 | |||
55 | сезий | Cs | −1, +1[36] (a strongly basic oxide) | +1 | 1 | I | |||
56 | барий | Ba | +1, +2 (a strongly basic oxide) | +2 | 2 | II | |||
57 | лантан | La | 0,[27] +1, +2, +3 (a strongly basic oxide) | +3 | 3 | III | |||
58 | серий | Ce | +1, +2, +3, +4 (a mildly basic oxide) | +3, +4 | n/a | - | |||
59 | празеодим | Pr | 0,[27] +1,[37] +2, +3, +4, +5 (a mildly basic oxide) | +3 | n/a | - | |||
60 | неодим | Nd | 0,[27] +2, +3, +4 (a mildly basic oxide) | +3 | n/a | - | |||
61 | прометий | Pm | +2, +3 (a mildly basic oxide) | +3 | n/a | - | |||
62 | самарий | Sm | 0,[27] +1, +2, +3 (a mildly basic oxide) | +3 | n/a | - | |||
63 | европий | Eu | +1, +2, +3 (a mildly basic oxide) | +2, +3 | n/a | - | |||
64 | гадолиний | Gd | 0,[27] +1, +2, +3 (a mildly basic oxide) | +3 | n/a | - | |||
65 | тербий | Tb | 0,[27] +1, +2, +3, +4 (a weakly basic oxide) | +3 | n/a | - | |||
66 | диспрозий | Dy | 0,[27] +1, +2, +3, +4 (a weakly basic oxide) | +3 | n/a | - | |||
67 | ҳолмий | Ho | 0,[27] +1, +2, +3 (a basic oxide) | +3 | n/a | - | |||
68 | эрбий | Er | 0,[27] +1, +2, +3 (a basic oxide) | +3 | n/a | - | |||
69 | тулий | Tm | +2, +3 (a basic oxide) | +3 | n/a | - | |||
70 | иттербий | Yb | +1, +2, +3 (a basic oxide) | +3 | n/a | - | |||
71 | лютесий | Lu | 0,[27] +1, +2, +3 (a weakly basic oxide) | +3 | n/a | - | |||
72 | ҳафний | Hf | −2, +1, +2, +3, +4 (an amphoteric oxide) | +4 | 4 | IV | |||
73 | тантал | Ta | −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) | +5 | 5 | V | |||
74 | волфрам | W | −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) | +4, +6 | 6 | VI | |||
75 | рений | Re | −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide) | +4 | 7 | VII | |||
76 | осмий | Os | −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) | +4 | 8 | VIII | |||
77 | иридий | Ir | −3, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[38] | +3, +4 | 9 | VIII | |||
78 | платина | Pt | −3, −2, −1, +1, +2, +3, +4, +5, +6 (a mildly basic oxide) | +2, +4 | 10 | VIII | |||
79 | тилло | Au | −3, −2, −1, +1, +2, +3, +5 (an amphoteric oxide) | +1, +3 | 11 | I | |||
80 | симоб | Hg | −2 , +1 (mercurous), +2 (mercuric) (a mildly basic oxide) | +2 | 12 | II | |||
81 | таллий | Tl | −5,[39] −2, −1, +1, +2, +3 (a mildly basic oxide) | +1, +3 | 13 | III | |||
82 | сурб | Pb | −4, −2, −1, +1, +2, +3, +4 (an amphoteric oxide) | +2, +4 | 14 | IV | |||
83 | висмут | Bi | −3, −2, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) | +3 | 15 | V | |||
84 | полоний | Po | −2, +2, +4, +5,[40] +6 (an amphoteric oxide) | −2, +2, +4 | 16 | VI | |||
85 | астат | At | −1, +1, +3, +5, +7[41] | −1, +1 | 17 | VII | |||
86 | радон | Rn | 0, +2, +6 | 0 | 18 | 0 | |||
87 | франcий | Fr | +1 (a strongly basic oxide) | +1 | 1 | I | |||
88 | радий | Ra | +2 (expected to have a strongly basic oxide) | +2 | 2 | II | |||
89 | актиний | Ac | +2, +3 (a strongly basic oxide) | +3 | 3 | III | |||
90 | торий | Th | +1, +2, +3, +4 (a weakly basic oxide) | +4 | n/a | - | |||
91 | протактиний | Pa | +2, +3, +4, +5 (a weakly basic oxide) | +5 | n/a | - | |||
92 | уран | U | +1, +2, +3,[42] +4, +5, +6 (a weakly basic oxide) | +6 | n/a | - | |||
93 | нептуний | Np | +2, +3, +4,[43] +5, +6, +7 (an amphoteric oxide) | +5 | n/a | - | |||
94 | плутоний | Pu | +1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide) | +4 | n/a | - | |||
95 | америcий | Am | +2, +3, +4, +5, +6, +7 (an amphoteric oxide) | +3 | n/a | - | |||
96 | кюрий | Cm | +2, +3, +4, +5,[44] +6[45] (an amphoteric oxide) | +3 | n/a | - | |||
97 | берклий | Bk | +2, +3, +4, +5[44] | +3 | n/a | - | |||
98 | калифорний | Cf | +2, +3, +4, +5[46][44] | +3 | n/a | - | |||
99 | эйнштейний | Es | +2, +3, +4 | +3 | n/a | - | |||
100 | фермий | Fm | +2, +3 | +3 | n/a | - | |||
101 | менделевий | Md | +2, +3 | +3 | n/a | - | |||
102 | нобелий | No | +2, +3 | +2 | n/a | - | |||
103 | лоуренсий | Lr | +3 | +3 | n/a | - | |||
104 | резерфордий | Rf | (+2), (+3), +4[47][48][49] (parenthesized: prediction) | (+3), +4 (parenthesized: prediction) | 4 | IV | |||
105 | дубний | Db | (+3), (+4), +5[48][49] (parenthesized: prediction) | +5 | 5 | V | |||
106 | сиборгий | Sg | 0, (+3), (+4), (+5), +6[48][49] (parenthesized: prediction) | (+4), +6 (parenthesized: prediction) | 6 | VI | |||
107 | борий | Bh | (+3), (+4), (+5), +7[48][49] (parenthesized: prediction) | (+3), (+4), (+5), +7 (parenthesized: prediction) | 7 | VII | |||
108 | ҳассий | Hs | (+2), (+3), (+4), (+6), +8[50][49][51] (parenthesized: prediction) | (+3), (+4) (parenthesized: prediction) | 8 | VIII | |||
109 | мейтнерий | Mt | (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[48][52][53][49] | (+1), (+3), (+6) (predicted) | 9 | VIII | |||
110 | дармштадтий | Ds | (0), (+2), (+4), (+6), (+8) (predicted)[48][49] | (0), (+2), (+8) (predicted) | 10 | VIII | |||
111 | рентгений | Rg | (−1), (+1), (+3), (+5), (+7) (predicted)[48][49][54] | (+3) (predicted) | 11 | I | |||
112 | коперниcий | Cn | 0, (+1), +2, (+4) (parenthesized: prediction)[48][55][49] | 0, +2 | 12 | II | |||
113 | ниҳоний | Nh | (−1), (+1), (+3), (+5) (predicted)[48][49][56] | (+1), (+3) (predicted) | 13 | III | |||
114 | флеровий | Fl | (0), (+1), (+2), (+4), (+6) (predicted)[48][49][57] | (+2) (predicted) | 14 | IV | |||
115 | московиум | Mc | (+1), (+3) (predicted)[48][49] | (+1), (+3) (predicted) | 15 | V | |||
116 | ливерморий | Lv | (−2),[58] (+2), (+4) (predicted)[48] | (+2) (predicted) | 16 | VI | |||
117 | теннесин | Ts | (−1), (+1), (+3), (+5) (predicted)[49][48] | (+1), (+3) (predicted) | 17 | VII | |||
118 | оганессон | Og | (−1),[48] (0), (+1),[59] (+2),[60] (+4),[60] (+6)[48] (predicted) | (+2), (+4) (predicted) | 18 | 0 | |||
119 | унуненний | Uue | (+1), (+3) (predicted)[48] | (+1) (predicted) | 1 | I | |||
120 | унбинилий | Ubn | (+1),[61] (+2), (+4) (predicted)[48] | (+2) (predicted) | 2 | II | |||
121 | унбиуний | Ubu | (+1), (+3) (predicted)[48][62] | (+3) (predicted) | 3 | III | |||
122 | унбибий | Ubb | (+4) (predicted)[63] | (+4) (predicted) | - | ||||
123 | унбитрий | Ubt | (+5) (predicted)[63] | (+5) (predicted) | |||||
124 | унбиквадий | Ubq | (+6) (predicted)[63] | (+6) (predicted) | |||||
125 | унбипентий | Ubp | (+1), (+6), (+7) (predicted)[63] | (+6), (+7) (predicted) | |||||
126 | унбигексий | Ubh | (+1), (+2), (+4), (+6), (+8) (predicted)[63] | (+4), (+6), (+8) (predicted) |
References
[вироиши манбаъ]- ↑ Beryllium: Beryllium(I) Hydride compound data. bernath.uwaterloo.ca. 10 Декабри 2007 санҷида шуд.
- ↑ (1995) «Infrared Emission Spectroscopy of BF and AIF». J. Molecular Spectroscopy 170 (1). doi:10.1006/jmsp.1995.1058. Bibcode: 1995JMoSp.170...82Z.
- ↑ Melanie Schroeder. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden(олмонӣ), стр. 139.
- ↑ Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical. 6 Декабри 2007 санҷида шуд.
- ↑ Fourier Transform Spectroscopy of the System of CP. 6 Декабри 2007 санҷида шуд.
- ↑ Carbon: Binary compounds. 6 Декабри 2007 санҷида шуд.
- ↑ Bernath, P. F. (1985). «The spectrum of magnesium hydride». Astrophysical Journal 298. doi:10.1086/163620. Bibcode: 1985ApJ...298..375B.
- ↑ (1996) «Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions». Angewandte Chemie International Edition 35 (2): 129–149. doi:10.1002/anie.199601291.
- ↑ D. C. Tyte (1964). «Red (B2Π–A2σ) Band System of Aluminium Monoxide». Nature 202 (4930). doi:10.1038/202383a0. Bibcode: 1964Natur.202..383T.
- ↑ Ram, R. S. (1998). «Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD». J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
- ↑ (2006) «Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds». Inorganic Chemistry 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
- ↑ (2010) «Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes». Journal of the American Chemical Society 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
- ↑ Smith, R. E. (1973). «Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 332 (1588): 113–127. doi:10.1098/rspa.1973.0015. Bibcode: 1973RSPSA.332..113S.
- ↑ McGuire, Joseph C. (1960). «Preparation and Properties of Scandium Dihydride». Journal of Chemical Physics 33 (5): 1584–1585. doi:10.1063/1.1731452. Bibcode: 1960JChPh..33.1584M.
- ↑ Andersson, N. (2003). «Emission spectra of TiH and TiD near 938 nm». J. Chem. Phys. 118 (8). doi:10.1063/1.1539848. Bibcode: 2003JChPh.118.3543A.
- ↑ (2003) «Fourier transform emission spectroscopy of the g4Δ-a4Δ system of FeCl». Journal of Molecular Spectroscopy 221 (2). doi:10.1016/S0022-2852(03)00225-X. Bibcode: 2003JMoSp.221..261R.
- ↑ Demazeau, G. (1982). «Recent developments in the field of high oxidation states of transition elements in oxides stabilization of Six-coordinated Iron(V)». Zeitschrift für anorganische und allgemeine Chemie 491: 60–66. doi:10.1002/zaac.19824910109.
- ↑ Lu, J. (2016). «Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−». Physical Chemistry Chemical Physics 18 (45): 31125–31131. doi:10.1039/C6CP06753K. PMID 27812577. Bibcode: 2016PCCP...1831125L.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
- ↑ (2009) «A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps». Angewandte Chemie International Edition 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
- ↑ (2009) «A Stable Tetraalkyl Complex of Nickel(IV)». Angewandte Chemie International Edition 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
- ↑ Ga(−3) has been observed in LaGa, see (2011) «Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen». Z. Naturforsch. 66b: 1107–1121.
- ↑ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (in немисӣ). PhD Thesis, ETH Zurich. p. 72. ISBN 978-3728125972. doi:10.3929/ethz-a-001859893.
- ↑ (2004) «Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters». Inorganic Chemistry 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- ↑ (1996) «High-Resolution Infrared Emission Spectrum of Strontium Monofluoride». J. Molecular Spectroscopy 175 (1). doi:10.1006/jmsp.1996.0019. Bibcode: 1996JMoSp.175..158C.
- ↑ 27.00 27.01 27.02 27.03 27.04 27.05 27.06 27.07 27.08 27.09 27.10 Yttrium and all lanthanides except Ce, Pm, Eu, Tm, Yb have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). «Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides». Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017.
- ↑ Zirconium: zirconium(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
- ↑ Molybdenum: molybdenum(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
- ↑ 30.0 30.1 Technetium: technetium(III) iodide compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
- ↑ Ruthenium: ruthenium(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
- ↑ Rhodium: rhodium(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
- ↑ (1996) «Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties». Inorganic Chemistry 35 (9): 2616–22. doi:10.1021/ic951378e.
- ↑ HSn. NIST Chemistry WebBook. National Institute of Standards and Technology. 23 Январ 2013 санҷида шуд.
- ↑ SnH3. NIST Chemistry WebBook. National Institure of Standards and Technology. 23 Январ 2013 санҷида шуд.
- ↑ Dye, J. L. (1979). «Compounds of Alkali Metal Anions». Angewandte Chemie International Edition 18 (8): 587–598. doi:10.1002/anie.197905871.
- ↑ (2019-12-13) «Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters». Inorganic Chemistry 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295.
- ↑ Wang, Guanjun (2014). «Identification of an iridium-containing compound with a formal oxidation state of IX». Nature 514 (7523): 475–477. doi:10.1038/nature13795. PMID 25341786. Bibcode: 2014Natur.514..475W.
- ↑ (1996) «Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions». Inorganic Chemistry 35 (11): 3107–12. doi:10.1021/ic960014z.
- ↑ (2010) «Relativistic Effects and the Chemistry of the Heavier Main Group Elements». Relativistic Methods for Chemists. doi:10.1007/978-1-4020-9975-5_2.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
- ↑ Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464.
- ↑ Np(II), (III) and (IV) have been observed, see (2017) «Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding». Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMID 28553487.
- ↑ 44.0 44.1 44.2 (2018) «Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States». Inorg. Chem. (American Chemical Society) 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. PMID 30040397.
- ↑ (October 2011) «Formation of volatile curium(VI) trioxide CmO3». Radiochemistry (SP MAIK Nauka/Interperiodica) 53 (5): 453–6. doi:10.1134/S1066362211050018.
- ↑ Greenwood, Earnshaw, p. 1265.
- ↑ Rutherfordium. Royal Chemical Society. 21 сентябри 2019 санҷида шуд.
- ↑ 48.00 48.01 48.02 48.03 48.04 48.05 48.06 48.07 48.08 48.09 48.10 48.11 48.12 48.13 48.14 48.15 48.16 48.17 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
- ↑ 49.00 49.01 49.02 49.03 49.04 49.05 49.06 49.07 49.08 49.09 49.10 49.11 49.12 (1975) «Superheavy elements: a prediction of their chemical and physical properties». Recent Impact of Physics on Inorganic Chemistry 21. doi:10.1007/BFb0116498. Санҷида шуд 4 October 2013.
- ↑ Haire, 2006, p. 1691.
- ↑ Investigation of group 8 metallocenes @ TASCA. 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Gesellschaft für Schwerionenforschung (2008).
- ↑ (2004) «Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties». Russian Journal of Coordination Chemistry 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
- ↑ (2010) «How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX». ChemPhysChem 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
- ↑ (15 June 2019) «Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist». Inorganic Chemistry 2019 (58): 8735–8738. doi:10.1021/acs.inorgchem.9b01139.
- ↑ Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. Retrieved 2018-04-21.
- ↑ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki. Relativistic Methods for Chemists. Springer. pp. 63–67. ISBN 978-1-4020-9974-8. doi:10.1007/978-1-4020-9975-5_2.
- ↑ Schwerdtfeger, Peter (2002). «Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study». Journal of Nuclear and Radiochemical Sciences 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Санҷида шуд 12 September 2014.
- ↑ (2010) «Relativistic Effects and the Chemistry of the Heavier Main Group Elements». Relativistic Methods for Chemists. doi:10.1007/978-1-4020-9975-5_2.
- ↑ (2000) «Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)». Journal of Chemical Physics 112 (6). doi:10.1063/1.480842. Bibcode: 2000JChPh.112.2684H.
- ↑ 60.0 60.1 Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.
- ↑ (2010) «Relativistic Effects and the Chemistry of the Heavier Main Group Elements». Relativistic Methods for Chemists. doi:10.1007/978-1-4020-9975-5_2.
- ↑ (12 September 2016) «4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra». Chemical Physics Letters 662: 169–175. doi:10.1016/j.cplett.2016.09.025. Bibcode: 2016CPL...662..169A.
- ↑ 63.0 63.1 63.2 63.3 63.4 (2011) «A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions». Physical Chemistry Chemical Physics 13 (1): 161–8. doi:10.1039/c0cp01575j. PMID 20967377. Bibcode: 2011PCCP...13..161P.
See also
[вироиши манбаъ]- Oxidation state
- {{List of oxidation states of the elements/row}}
- {{List of oxidation states of the elements/datacheck}} -- compare values with element infobox values.